A Direct Policy-Search Algorithm for Relational
Reinforcement Learning

Samuel Sarjant! (™) Bernhard Pfahringer!', Kurt Driessens?, and Tony Smith’

1 The University of Waikato, Waikato, New Zealand
{sarjant,bernhard,tcs}@uaikato.ac.nz
2 Maastricht University, Maastricht, The Netherlands
kurt.driessens@maastrichtuniversity.nl

Abstract. In the field of relational reinforcement learning — a rep-
resentational generalisation of reinforcement learning — the first-order
representation of environments results in a potentially infinite number of
possible states, requiring learning agents to use some form of abstraction
to learn effectively. Instead of forming an abstraction over the state-
action space, an alternative technique is to create behaviour directly
through policy-search. The algorithm named CERRLA presented in this
paper uses the cross-entropy method to learn behaviour directly in the
form of decision-lists of relation rules for solving problems in a range
of different environments, without the need for expert guidance in the
learning process. The behaviour produced by the algorithm is easy to
comprehend and is biased towards compactness. The results obtained
show that CERRLA is competitive in both the standard testing environ-
ment and in Ms. PAC-MAN and CARCASSONNE, two large and complex
game environments.

1 Introduction

Reinforcement Learning (RL) is a subfield of machine learning in which an agent
interacts with an environment using actions and receives numerical reward as
feedback [1]. An agent selects actions using a policy: a decision-making structure
that produces an action when given observations for the current state. As the
field of RL matures, the need for more advanced testing environments increases
as algorithms become progressively ‘smarter.” In order to represent these complex
environments, the field of Relational Reinforcement Learning (RRL) came about,
where environments could be represented by variable numbers of objects and
relations [2—4]. This representation allows environments with any number of
objects and relations to be represented with the same common formalism.
Attempting to learn the value function directly can be impossible in envi-
ronments consisting of an infinite number of states so a common technique in
RRL is to learn an approximate value function for estimating the utility of an
action in every state [5-7]. These methods attempt to approximate the value
function for every state (and action) in the environment and use the values to
extract a policy that selects actions with the largest predicted reward. However,

(© Springer-Verlag Berlin Heidelberg 2014
G. Zaverucha et al. (Eds.): ILP 2013, LNAI 8812, pp. 76-92, 2014.
DOI: 10.1007/978-3-662-44923-3_6

A Direct Policy-Search Algorithm for Relational Reinforcement Learning 7

in order to learn a reasonably accurate approximate value function, the agent
must first discover which states are rewarding. This can be achieved by meth-
ods such as random exploration, which is ineffective in complex environments, or
using some form of initial guidance such as injecting an expert trace of behaviour
[8], which requires some intervention from an external agent (such as a human
or pre-existing model).

Instead of approximating values for every state, then extracting a greedy pol-
icy from these values, an alternative is to attempt to learn the policy directly.
Policy-search methods have some advantages over value-function approxima-
tion methods: policies are typically smaller than value-functions, as they only
need to represent which action to take in a state; and changes in the reward
received will not change the policy if the best action for a state remains constant.
A disadvantage is that policy-search methods typically require a large number of
episodes for training, though this value is usually unaffected by the scale of the
environment. Existing policy-search RRL algorithms such as GREY and GAPI
have been shown to learn optimal policies in the BLocks WORLD, but testing
has been limited to smaller environments [9,10].

Like GREY and GAPI, the algorithm presented in this paper performs direct
policy-search where an agent’s policy is represented as a decision-list of condition-
action rules. The Cross-Entropy Method (CEM), originally developed by [11],
is an optimisation algorithm already shown to be effective for learning agent
behaviour [12-14], as well as a number of other domains, such as clustering, con-
trol and navigation, and continuous optimisation to name a few [15]. We use the
CEM’s probabilistic optimisation approach to control the policy-creation aspect
of the algorithm.

This paper describes Cross-Entropy Relational Reinforcement Learning Algo-
rithm (CERRLA), an application of the CEM for learning behaviour in a range of
different relational environments. The CEM is used to identify the best combi-
nation of relational condition-action rules acting as the agent’s policy. Rules are
created in a top-down manner by gradually specialising useful rules in search of
better policies. The policies produced by CERRLA should be effective, concise,
and easily understood by a human.

To test the general applicability of the algorithm to different environments,
we evaluate CERRLA on three separate environments: the standard RRL BLOCKS
WORLD environment, where it achieves excellent results regardless of problem
scale; and two game environments, MS. PAC-MAN and CARCASSONNE, which
provide large state spaces and complex action-interactions. Included with the
results are example policies produced by CERRLA for each environment.

2 Related Work

The CERRLA algorithm was originally inspired by the algorithm presented in
[12]: a Ms. Pac-Man playing agent that uses the Cross-Entropy Method (CEM)
to generate and test rule-based policies. The algorithm begins with a set of 42
hand-coded candidate rules that are used to create a rule-based, deterministic

78 S. Sarjant et al.

policy of maximum size 30. The algorithm learns better behaviour by randomly
sampling rules for each of the 30 possible positions in the policy and then adjust-
ing the rule sampling probabilities to produce better performing policies more
frequently. This paper also looked at randomly created rules, which did not per-
form as well as the hand-coded rules, but still performed well. This algorithm
formed the core design behind CERRLA, though CERRLA has since expanded
upon this design in the following aspects: CERRLA starts without any rules or
policy size restrictions and creates new rules as it learns; CERRLA learns rela-
tional rules/policies for a range of relational environments rather than the single
Ms. Pac-Man environment; and CERRLA learns using an iterative CEM, rather
than population-based, to quickly integrate newly created rules.

CERRLA uses a similar learning process as the two policy-search RRL algo-
rithms GREY and GAPI: use an evolutionary algorithm to learn a rule-based
policy. Both GREY and GAPI use a standard genetic algorithm implementation
[16], treating entire policies as chromosomes to be mutated for the recombi-
nation operation. However, mutation operations also take place on the rules
within each policy by randomly adding/removing literals or replacing variables
with constants. Both algorithms were tested in the standard BLOCKS WORLD
environment, where they each successfully created goal-achieving policies, but
the policies sometimes included useless or detrimental rules. The cross-entropy
method employed by CERRLA actively reduces the likelihood of including use-
less rules, and the rule creation process is bottom-up, resulting in fewer useless
literals in rules. GAPI was also tested in a ‘gold-finding’ environment, which is
a step towards more complicated environments. We take this further by testing
CERRLA in real-world games that are challenging for humans as well as Al.

The Foxcs system creates rule-based policies by utilising the XCS system for
the first-order setting [17,18]. Learning is achieved by maintaining an expected
reward and accuracy value for that reward for every rule. These values are used
to identify useful rules and guide rule mutation (using standard mutation oper-
ations). CERRLA also maintains a value for every rule, but the need to maintain
an expected value for every rule limits the scalability of Foxcs. This can be
seen in [19], where Foxcs performs worse as the size of the BLOCKS WORLD
environment grows. Because CERRLA uses probabilities of utility for each rule,
the learning rate remains roughly proportional to the number of rules, rather
than size of the environment.

Two more RRL systems also deserve a mention, as they perform well on large
environments. The LRW-API approach learns a policy by iteratively performing
batches of policy rollouts as an approzimate policy iteration algorithm [20]. At
any given state, the algorithm updates the Q-value for every action by creat-
ing w policy trajectories of length A to identify the most advantageous action
to perform (most difference between expected reward and actual reward). The
algorithm is able to offset the cost of the rollouts by beginning learning in artifi-
cially smaller environments defined as the state reached after n random actions
from the initial state. By beginning in small environments and increasing n,
the algorithm can quickly scale to large and complex environments. The main

A Direct Policy-Search Algorithm for Relational Reinforcement Learning 79

Relational State Observations:
block(a) thing(b) clear(fl) above(a, b) height(b, 1) a
block(b) thing(c) highest(a) above(a, fl) height(c, 1)

block(c) thing(fl) on(a, b) above(b, fl) height(fl, 0)

floor(fl) clear(a) on(b, fl) above(c, fl) b C
thing(a) clear(c) on(c, fl) height(a, 2)

Valid Actions:

move(a, c) move(a, fl) move(c, a) ﬂoor

Fig. 1. A 3-block BLOCKS WORLD state observation example. a is on b which is on the
floor, and c is also on the floor.

disadvantage of this method is the ‘controlled experiment’ assumption that the
world model can be accessed at any state, whereas RRL world models are typi-
cally ‘black boxes’ that only allow a single action per state.

The NPPG algorithm also uses bootstrapping to overcome the problem of
large environments in the form of policy-gradient boosting [21]. The algorithm
iteratively builds regression models to approximate the value function (using
batches of episode traces as training data) by layering the model on top of
existing models, where each regression model is created to cover the examples
previous models do not adequately cover. Each model also receives a weighting
to reflect the utility of its predictions. The algorithm performs very well on a
10-block BLOCKS WORLD environment (thus far, the 10-block environment was
typically too large for value-based algorithms to tackle directly), though it does
use expert traces to seed the learning with positive examples. A downside to
NPPG is the output behaviour is largely incomprehensible, as it is made up of
many different weighted models.

3 Terminology

The relational representation used throughout this paper is as follows: a constant
c is a lowercase symbol representing a uniquely named object of a given type
(e.g. thing, block, enemy). A variable V is an uppercase symbol representing an
abstract object. A term t may be either a constant or variable. A predicate p
is a relation acting upon one or more objects with specifically typed arguments.
Environments are defined by state predicates Ps = {ps1,-..,Psn} (which include
type predicates P, = {pi1,...,pen}) and action predicates Py, = {pa.1,---,Pan}-
An atom p(ty,...,t,) is a predicate with terms for arguments. A ground atom
p(cr, ..., c,) only uses constants for arguments. A goal variable G; is a special
indexed variable representing one of the constants in the goal and is substituted
by the appropriate goal constant when the variable is evaluated. The anonymous
variable ‘7’ represents any object.

An environment’s state observations consist of a complete description of the
state s = {ps,i(c1,1,---,C1n), s Psm(Cm1s- -, Cm,n) } and the current available
actions A(s) = {pe1(c11,---s¢1n)s---sPam(Cm1s---,Cmn)}. Any constants

80 S. Sarjant et al.

clear(Gy), clear(G1), block(Go) — move(Go, G1)
above(X, G1), clear(X), floor(Y) — move(X, Y)
above(X, Gy), clear(X), floor(Y) — move(X, Y)

Fig. 2. An optimal BLOCKS WORLD onA B policy generated by CERRLA. Note that Go
and GG are parameterisable goal constants.

directly related to the environment’s goal are also provided to the agent. Accom-
panying each state observation is a reward value. There is no guarantee that an
environment will be defined by a Relational Markov Decision Process (RMDP)
[3]; the learning agent must simply select an action without absolute knowledge
of what state will follow.

3.1 Blocks World

The BLOCKS WORLD environment is the most commonly used testing envi-
ronment in the RRL and planning fields due to its simple, but fundamental
dynamics. The BLOCKS WORLD environment will be used for examples in the
following sections. The environment consists of a number of blocks stack on
top of each other, all stacked on the floor. An agent may move a block on to
another block, or on to the floor. A BLocKks WORLD state is described by: P; =
{clear(Thing), on(Block, Thing), above(Block,Thing), highest(Block), height
(Thing,N)} and type predicates P, = {thing,block, floor}. The only action
predicate is P, = {move(Block,Thing)}. Figure 1 shows an example state for a
3-block BLocks WORLD with the listing of all state and action observations for
the current state.

Commonly used goals include the onAB goal: place block Gy onto block G,
(G and G; are randomly defined blocks at the start of every episode); and the
stack goal: stack every block into a tower. Each episode runs for a maximum of
2n steps, where n is the number of blocks. The reward received is 1 if the goal
is achieved in minimal steps, or some value linearly distributed between 1 and 0
inversely proportional to the number of steps over the minimum the agent took
to complete the goal.

4 CERRLA Algorithm

The Cross-Entropy Relational Reinforcement Learning Algorithm (CERRLA)
generates policies for a RRL agent by combining a number of randomly sampled
condition-action rules into a single decision-list policy (Fig.2).! When the pol-
icy is evaluated against the current state observations, it produces one or more
actions depending on which rule conditions match the observations. Each rule

! Source code, experiment files and videos of CERRLA in action can be found at www.
samsarjant.com/cerrla.

www.samsarjant.com/cerrla
www.samsarjant.com/cerrla

A Direct Policy-Search Algorithm for Relational Reinforcement Learning 81

is sampled from a separate distribution of similar rules, where the probability
of the rule is dynamically adjusted based on the rule’s utility. This process is
known as the Cross-Entropy Method (CEM) and it forms the backbone of the
probability optimisation aspect of CERRLA, though some modifications to the
core CEM are described in Sect. 4.3.

The other aspect of CERRLA is the rule discovery aspect (Sect.4.2). Rules
are created in CERRLA by learning general conditions for every possible action,
then gradually applying specific specialisation operators to empirically useful
rules to create more complex ‘child’ rules.

4.1 Cross-Entropy Method

The CEM is a population-based optimisation algorithm, similar to evolutionary
algorithms, that uses guided random sampling from one or more distributions to
produce effective combinatorial solutions to a given problem. Distributions may
be discrete or continuous, but in the context of CERRLA, the distributions are sets
of condition-action rules, each with a corresponding probability of being sampled.
A sample is a combination of sampled rules represented in a decision-list format
(the order of the rules is defined in Sect. 4.3). For a comprehensive exploration of
the CEM, see [15].
The CEM is essentially composed of two repeating steps:

1. Generate and test IV samples from a distribution of data.
2. Update the distribution such that the top subset of the sampled data is more
likely to be generated again in the next iteration.

At every iteration, each distribution produces a randomly selected rule. These
rules combine to form a deterministic policy which is then evaluated against the
environment which returns the total reward received under the policy. The subset
of policies that receive the greatest reward within a population of policies are
used to update the rule sampling probabilities, such that the policies’ rules are
more likely to be sampled again. Intuitively, the algorithm works as follows: in the
early stages, the algorithm does not perform any worse than random guessing,
but as it gathers samples, it shapes the distribution such that guessing becomes
more and more biased towards high-value samples.

Formally, using CERRLA as context, the CEM algorithm is as follows: the
algorithm begins with K distributions of rules (Dy <« {rix,...,7nx}), where
each rule r; ;. has a corresponding sampling probability p; 5, € [0,1] : Z?zl Dk =
1 (a distribution is typically uniform at the outset). N samples are generated
(X « {x1,...,xn}), where each sample contains a single randomly sampled rule
from each distribution (arranged via some heuristic), and tested with evaluation
function f(x) (for CERRLA, this is the total reward received). The samples are
then sorted into descending order according to f(x) and all samples with f(x) >
Ye1+1 are extracted as ‘elite samples’ Eyy 1, where .41 is equal to the value of
the N};h sorted sample. The minimum number of elite samples is defined as
Ng « p- N (typically p < 0.05). Note that there may be more than Ng elite
samples, as multiple samples could have a value equal to the threshold.

82 S. Sarjant et al.

The observed distribution Dj, is then calculated for every distribution Dy, as
the frequency of rules within the elite samples:

’ 1if Xik =Tjk
Pjk (Z {0 otherwise)/|Et+1| (1)

x;€Ei11

meaning p;-’ & is equal to the proportion of elite samples containing rule r; ;, from
distribution Dj,.
The distribution probabilities are then updated using a step-size parameter
a (typically « is between 0.4 and 0.9 [15]) to smoothly modify the distribution
probabilities:
Pika+1 = @ pip+ (L=) pjke (2)

This sample-update loop repeats until some convergence measure is reached:
(1) a predefined finite number of iterations have passed; (2) probabilities have
converged to 0 or 1; or (3) the distributions sufficiently match the observed elites
distributions for a given number of iterations.

4.2 Rule Discovery

CERRLA begins the rule discovery process by first calculating the Relative Least
General Generalisation (RLGG) for each action in the environment [22]. Further
rules are created in a top-down fashion by iteratively specialising empirically
useful rules. Each rule is simplified with inferred simplification rules to remove
redundant conditions and identify illegal condition combinations, removing ille-
gal and semantically-identical redundant rules from the set of possible rules.

Learning the RLGG. The first rules created by CERRLA are the RLGG rules
for every action in the environment. Because all state information is available,
the RLGG operation only needs to perform lgg operations (background knowl-
edge is considered to be part of the state). Each rule encodes the least general
set of conditions that have been observed to be true whenever the rule’s action
is available for the current state. Contrary to the RLGG process in [22], this
RLGG process uses a lossy inverse substitution to only record information rel-
evant to the rule’s action; other information is discarded. That is, the process
only considers literals containing constants found in the action, or defined in the
environment goal. This lossy inverse substitution focuses learning on the core
literals involved in the rule’s action, reducing the search space of rules; but has
the drawback of losing potentially useful information.

Given a state s and a set of valid actions A(s) = {a1,...,an} : a; =
Pa.i(Ci,Ci2, -..), the RLGG conditions for each action are defined as:

TRLGGE = lgg(T%LGG,t—la 0~ r(s, ai))

where r§; ¢ -1 18 the existing RLGG rule for action predicate p, and r(s,a;)
is a rule composed of atomic action a; and every state observation containing

A Direct Policy-Search Algorithm for Relational Reinforcement Learning 83

one or more of the constants in a;. The RLGG of the two rules uses a lossy
inverse substitution defined by the current arguments of the atomic action a;,
such that 6, = {c;1/X,¢i2/Y,...}. Any non-numerical constants not included
in 9;1 are replaced by the anonymous variable ‘7" which can be substituted for
any constant when evaluated. Numerical constants are replaced by free variables
representing the number. The resulting rule encodes a near-least general set of
conditions (due to lossy inverse substitution) required for taking action p,.

Ezample 1. Referring to Fig. 1, the RLGG calculation process for the three valid
actions move(a, ¢), move(a, fl), move(c, a) is described in the following example,
processing one rule at a time (beginning with ¢ = 1):

Tmove(a, ¢) = block(a), block(c), thing(a), thing(c), clear(a), clear(c), on(a, b),
on(c, fl), above(a, b), above(a, fl), above(c, fl) — move(a, c)

91:74:([)1]6(0/ c) = {G/X, C/Y}

Thica, = block(X), block(Y), thing(X), thing(Y), clear(X), clear(Y), on(X, ?),
on(Y, ?), above(X, ?), above(Y, ?) — move(X, Y)

This is already very close to the actual RLGG; only the conditions block(Y),
on(Y, ?), and above(Y, ?) are not always true, as evidenced in the following
example:

Tmove(a, f) = block(a), floor(fl), thing(a), thing(fl), clear(a), clear(fl), on(a, b),
on(b, fl), on(c, fl), above(a, b), above(a, fl), above(b, fl), above(c, fl) — move(a,

-1

amove(a,) = {Cl/X, fl/Y}

TRLGG.2 = block(X), thing(X), thing(Y), clear(X), clear(Y), on(X, ?), above(X,
?) — move(X, Y)

This rule is in fact the RLGG for the BLOCKS WORLD move action, so there
is no need to describe the process for the final action of the state (as the rule
cannot generalise any further). Many of the conditions in this rule are redundant
with respect to other facts though (e.g. on(X, ?) is always true if above(X, ?)
is true) and can be removed using the simplification rules described in the rule
simplification section. The simplified rule is:

TRLGG, 2 = clear(X), clear(Y), block(X) — move(X, Y) (3)

Rule Specialisation. CERRLA uses three specialisation operators: (1) additive,
(2) goal-replacement, and (3) range-splitting. Each specialisation operator creates
a new rule with more specialised conditions.

(1) Additive specialisation specialises a rule by adding a condition to it.
Instead of adding an arbitrary condition to a rule r® with any possible argu-
ment bindings, CERRLA restricts the set of specialisation conditions to those
that include action-related conditions and have been observed to be true (but
not in the RLGG conditions) when action a is available. Each specialisation

84 S. Sarjant et al.

condition is recorded with inversely-substituted arguments (replace all action-
related constants with variables and replace all goal-related constants with goal
variables). Negated specialisation conditions are also used to specialise a rule.

(2) For every constant in the environment goal, goal-replacement replaces
all occurrences of one of the action’s arguments with an indexed ‘goal variable’
G, representing one of the constants in the environment’s current goal. After
replacing the variable, if all conditions containing the goal variable in the rule
have previously been observed to be possible (i.e. ensure the rule’s conditions
can feasibly be met), the specialised rule is valid, otherwise it is invalid and
discarded.

(3) Range splitting creates specialised rules by splitting an existing range
(or a variable representing a number) into up to five overlapping sub-ranges:
the lower half, the upper half, a central half, and if applicable, a negative sub-
range (lower bound to 0), and a positive sub-range (0 to upper bound). Except
when 0 is a bound, the range bounds are expressed as variable fractions of the
observed minimum and maximum bounds so the rule does not need to change
when the bounds change. For instance, a range from [—4, 8] would be split into
the following subranges: [—4, 2], [2, 8], [-1,5], [-4, 0], and [0, 8] (all represented
as variable fractions of the original range).

Ezample 2. The RLGG rule from the prior example (Eq.3) can be specialised
into the following example rules:
r1*°%¢ = clear(X), clear(Y), block(X), floor(Y) — move(X, Y)
r5°%¢ = clear(X), clear(Y), block(X), not (highest(X)) — move(X, Y)
r5'°% = clear (Gy), clear(Y),block (Go) — move(Gy,Y)
ry*°% = clear(X), clear(Y), block(X),on(X,Gy) — move(X, Y)

As there are no variables representing numerical arguments, the range splitting
specialisation does not produce any rules. Note that some rules contain redun-
dant conditions and can be simplified (see the following section).

Rule Simplification. To avoid creating illegal rules or rules containing redun-
dant conditions, CERRLA also infers simplification rules for the environment.

Simplification rules are created using the RLGG method in Sect.4.2 but
instead of calculating the RLGG relative to each action predicate p,, it is calcu-
lated relative to each state predicate ps. The resulting set of RLGG conditions
encode the relationship between each state predicate ps and all other predicates,
producing implication rules in the form A = B, such that condition-action rules
containing both A and B remove condition B. Furthermore, rules containing A
and —B are marked as illegal rules and are deleted from CERRLA’s distributions.
If B = A as well, the rule is instead recorded as an equivalence rule A & B,
such that condition-action rules containing B replace it with A.

The RLGG can also be calculated for the set of atoms that are never true
when p; is present as well. The variable representation of the lossy inverse sub-

stitution 9;1@1) results in a finite set of possible atoms given the set of

A Direct Policy-Search Algorithm for Relational Reinforcement Learning 85

state predicates (as all constants are replaced by variable X,Y,... or ‘?’). By
removing the inversely substituted true atoms from this set, the RLGG of never
true atoms relative to ps can also be calculated to produce simplification rules
involving negated conditions.

Example 3. Some of the simplification rules created for BLOCKS WORLD include:

on(X, Y)= above(X, Y), floor(Y) < clear(Y), on(X, Y),
highest(X) = not(on(?, X)), block(X) < on(X, ?)
block(X) = not (floor(X))

Whenever the right-hand side of a simplification rule subsumes a rule’s lit-
eral(s), they are removed (or replaced by the substituted left-hand side literals
for equivalence rules). Note that ‘?” explicitly represents the anonymous variable
when performing rule simplification (i.e. all ‘?” are treated as constants).

4.3 Policy-Search Process

The CERRLA algorithm (Algorithm 1) uses a modified version of the CEM to
produce policies. Each distribution of candidate rules is sampled to produce a
single rule, which is included into the policy in a specific order. The policy is
then deterministically evaluated throughout the episode to produce the agent’s
actions. The policies that received the largest reward form an ‘elite distribution’
which the rule sampling probabilities are adjusted toward, such that rules in an
elite policy are more likely to be sampled again.

Algorithm 1. Pseudocode summary of CERRLA.

Initialise the distribution set D > Initially empty. Learns RLGG rules to start
repeat
Generate a policy 7 from D > Sample < 1 rule from each D in D and order into policy
Evaluate m, receiving average reward R > Run three times and average
Update elite samples E with sample 7 and value R > If m is good, add to E
Update D using E > Adjust probabilities for each D in D to be closer to distribution in E
Specialise rules (if D is ready) > If a rule is highly probable, branch it to a new D
until D has converged > Until no more branching is possible

Instead of a population-based approach, CERRLA uses an online variation of
the CEM, similar to the CEM variant in [23], which updates the distributions
after every sample. Instead of sampling batches of N samples, the algorithm
maintains a sliding window of N samples, such that the elites E consist of
the best samples from the last N samples (instead of the best samples in a
batch). The online variation is able to adapt to a changing number of rules and
distributions as CERRLA creates new specialisations.

86 S. Sarjant et al.

Initialisation. CERRLA begins with no rules or distributions (D < {}) but
quickly creates distributions by firstly observing the RLGG for every available
action, then creating all immediate specialisations of the RLGG (as described
in Sect.4.2). Each of these rules acts as a seed for a new distribution, such
that a distribution consists of a uniform distribution of the seed rule and all
immediate specialisations of the seed rule. Each D also has two properties: the
probability that a rule from D is present within a policy, p(D) € [0, 1] (initially
p(D) « 0.5); and the average relative positions of sampled rules within generated
policies, g(D) € [0, 1], where 0 represents the first position and 1 represents the
last (initially ¢(D) < 0.5).

The number of rules within D is written as |D| and K L(D) represents the
Kullback-Leibler (KL) size, or distance from the uniform distribution, of D such
that:

KL(D) < max [ID| : (1 — Y prlogp (D) ‘M)) 711 (4)
reD

A uniform distribution has K L(D) = |D|, but a distribution with a single high

probability rule (e.g. p; > 0.95) has KL(D) = 1.

Policy Generation. A policy 7 is generated by sampling a rule from every
distribution D in D. For each D, a rule will only be sampled from D with
probability p(D). The position of the sampled rule is determined by the relative
ranking to all other rules in the policy. This relative value relQ(D) is sampled
from a normal distribution with parameters ¢(D) for the mean, and 1—|1—2p(D)]
as the standard deviation. Rules are ordered in the policy in ascending order
according to their respective rel@(D). When D is initialised with p(D) = 0.5,
the relative position of each sampled rules varies wildly, but as the p(D) converges
towards 0 or 1, the relative position fluctuates less.

The policy 7 is evaluated at every decision step using the current state obser-
vations. Starting with the first rule in the policy, each rule is evaluated as a query
on the state. If a substitution(s) for the rule’s conditions is found, the rule’s
action is returned with the substituted values applied (there may be more than
one substitution). If multiple actions are returned by the agent, an environment-
specific selection mechanism (e.g. sort by distance) selects and resolves one of
the actions and advances to the next state. The value of a policy (f (7)) is equal
to the average total-episodic-reward received for a given number of episodes (we
use three episodes in experiments).

Updating. After a policy m has been evaluated, it is added to the floating set of
elite samples E if f(m) > v (the worst elite sample). Before this occurs, any elite
samples that have existed for greater than N iterations are removed to ensure
the elites represent recent samples. Rather than using a fixed elite sample size,
CERRLA dynamically changes the number of elites Ng based on the state of the
current distributions:

A Direct Policy-Search Algorithm for Relational Reinforcement Learning 87

N [KL(D) - p(D)), D] 5
B < max | arg max (KL(D) - p(D)) DX:GDP() (5)
largest distribution —

sum distribution means

where N «— Ng/p, as with the regular CEM. This equation results in a large
Ng when CERRLA contains new, undertested distributions, and a smaller Ng
when rule probabilities and distribution means are close to 0 or 1.

After potentially adding the sample to the elite samples, the distributions are
updated. The increased frequency of updates requires a reduced update step-size
to ‘smooth’ the learning rate. Instead of «, the single-step update parameter
ay < /N is used, which is approximately equal to the standard « update rate.

A restriction applies to updates: a distribution D is only updated if it has
produced C - |D| samples. This reduces update bias towards early samples, and
provides enough samples for a distribution to be fairly represented in the elite
samples. C' = 3 is used in experiments as it provides 95 % coverage of all rules
in a uniform distribution [24].

The update process consists of updating every candidate rule distribution in
D (as per Sect.4.1), as well as their properties p(D) and ¢(D). Only the rules
that fired throughout the sample’s testing episodes matter, therefore unused
rules (and their distributions) are not included in the update and, implicitly,
negatively updated. Each update operation uses Eq.2 to adjust the values in
a step-wise manner. The observed value for p(D) is simply the proportion of
policies containing D within the elites. The observed value for ¢(D) is the average
relative position of rules from D within the elite policies, where 0 represents the
first position and 1 represents the last.

Rule Exploration. When a rule has a sufficiently high probability, it ‘branches,’
creating new rules with more specialised conditions in hopes of finding better
rules. This process is triggered when a distribution’s KL(D) < ¢ - |D|, where
0 = min [(d + 1)*1,p(D)], representing the splitting point with respect to the
depth d of the distribution or number of branches from the RLGG distribution.
The highest probability rule from D is removed from D, and is used to seed
a new distribution, populating the distribution with r and all immediate spe-
cialisations of r. The only restriction to this exploration process is if r originally
seeded D, in which case no branching occurs.

Convergence. CERRLA is considered converged when each distribution is con-
sidered converged. A distribution is converged when the sum divergence of the
rule probabilities between updates is less than «; - 3 (a convergence threshold).
Alternatively, experiments can specify a fixed number of training episodes. Upon
convergence, the current best elite sample is also output as the best solution.

88 S. Sarjant et al.

Blocks World, stack

1 T T

0.8 b

©
(a) Performances comparison in BLOCKS WORLD § 0.6 -
with 3-10 blocks for various RRL algorithms. g i
Note that some figures are approximate readings & 0.4)
from a graph. 202 Greedy —+—

Average # of Training 0 | Samplled —
Algorithm Reward |Episodes (% 103) 0 500 1000 1500
stack onAB| stack onAB Episodes
CERRLA 1.00 0.99] 1.60 10.30| (b) Srack goal in 100-block BLOCKS WORLD.
P-RRL [2] 1.00 0.65| 0.05 0.05
RRL-TG [5] 0.88 0.92| 0.50 12.50 Blocks World, onAB
RRL-TG (P) [5] | 1.00 0.92|30.00 30.00 !
RRL-RIB [5] 0.98 0.90| 0.50 250(ok d
RRL-KBR [5] | 1.00 0.98| 0.50 250 &
TRENDI [6] 1.00 0.99| 0.50 2.50| 20.6 [7
TREENPPG [21]] — 099 — 2.00] g i
MARLIE [7] 1.00 0.98| 2.00 2.00 S 04
Foxcs [18] 1.00 0.98{20.00 50.00| < 0.2 Greedy —+—
0 1 1 1samplxed %

0 2000 4000 6000 8000 1000012000
Episodes

(c) OnAB goal in 100-block BLOCKS WORLD.

Fig. 3. CERRLA’s performance in the BLOCKS WORLD environment.

5 Evaluation

CERRLA is evaluated in three separate environments: BLOCKS WORLD, Ms. PAC-
MAN, and CARCASSONNE.? Each environment presents a different problem for
the agent to solve, though all share a common RRL representational format.
All reported results are averaged across 10 separate experiments. Each figure
contains two performances: sampled performance, the reward received during
training; and greedy performance, the average reward received for 100 testing
policies (not included in training time/number of episodes) using the current
best elite sample.

5.1 Blocks World

Figure 3a compares CERRLA’s BLOCKS WORLD performance against other
RRL algorithms for both stack and onAB goals. A summary of current RRL
algorithms can be found in [4]. Like most RRL algorithms it is able to learn opti-
mal or near-optimal behaviour in both goals, though it requires more episodes

2 An additional environment detailed in [25] was omitted for space reasons.

A Direct Policy-Search Algorithm for Relational Reinforcement Learning 89

than the value-based algorithms to do so (training time for each goal was 6 and
34 s respectively). Figure3b and ¢ demonstrates a powerful property of CER-
RLA: even in a BLOCKS WORLD of 100 blocks, the learning rate remains roughly
constant (training time is only ~50 times longer compared to exponential state
increase). In most other compared approaches, learning rate deteriorates as the
number of blocks increase.

The effects of the simplification rules are tested by comparing two 12,000
fixed-episode experiments for the onAB goal: one using rule simplification, the
other not using rule simplification (denoted in brackets). CERRLA initially creates
244 (1,150) rules spread over 17 (32) distributions. At 12,000 training episodes,
the algorithm has 330 (1,405) rules spread over 27 (40) distributions, with an
average greedy performance of 0.99 (0.86), and an average training time of 43
(165) seconds. It is clear that rule simplification is highly effective in all aspects
of CERRLA’s learning.

5.2 Ms.Pac-Man

Ms. PAc-MAN is a famous arcade video-game in which the player (CERRLA)
controls a character that eats dots for points inside a finite maze while avoiding
four hostile ghosts. When one of four ‘power dots’ is eaten, the ghosts become
non-hostile for a short time and can be eaten for an increasingly larger number
of points. CERRLA’s control of the character is defined by high-level actions that
resolve into low-level directional movement. If multiple actions are predicted by
the same rule, the action with the closest object to the agent is acted upon. If
multiple objects are equidistant in different directions, the next rule in the policy
breaks the tie (otherwise choose randomly).

A Ms. Pac-MaNstateis described by similar predicatesseenin [12]: Py = {dist-
ance(Thing, N), junctionSa fety(Junction, N), blinking(Ghost), edible(Ghost) }
and type predicates P, = {thing, dot, ghost, power Dot, ghostCentre, junction}.
The action predicates are P, = {moveTo(Thing,N), moveFrom(Thing,N), to-
Junction(Junction, N)} (the numeric value is meta-data for resolving the action).

Within a single level, CERRLA achieves an average greedy performance of 7196
points per episode. Compared to the conceptually equivalent CE-RANDOMRB
agent from [12] (6382 points), CERRLA learns a slightly better policy. CERRLA
performs slightly worse than the reported hand-coded and human average scores
of 8186 and 8064 points respectively of [12]. An agent can achieve a theoretical
maximum of 15,600 points in a single level, so CERRLA’s performance could be
improved. Figure 4a shows an example policy produced by CERRLA that focuses
primarily on eating edible ghosts, powerDots, and dots in that order.

CERRLA’s rule-based representation can also facilitate transfer learning (trans-
fer learned behaviour for a source goal into behaviour for a target goal). During
initialisation for the target goal, each rule in the greedy policy for the source goal
seeds a new distribution, providing a headstart in the specialisation process. When
the behaviour learned in the Single-Level goal is used to initialise the algorithm
for a Ten-Levels goal, an improvement can be seen in the resulting behaviour
(Fig. 4c).

90 S. Sarjant et al.

edible(X), distance(X, Y) — moveTo(X, Y)

powerDot(X), distance(X, Y) — moveTo(X, Y)

thing(X), distance(X, Y), not(ghost(X)), not(ghostCentre(X)) — moveTo(X, Y)
dot(X), distance(X, (26 < Y < 52)) — moveFrom(X, Y)

(a) Example Single Level MS. PAC-MAN policy generated by CERRLA. Achieves an average
reward of 7534.

Ms. Pac-Man, Single Level Ms. Pac-Man, Ten Levels Goal (wt. Transfer)
10000 T T T T 16000 T T T
T 8000 = L
fgv ‘;“ 12000 R e
& 6000 4 ot -
o o 8000 - % b
2 4000 2 :
@ @ S
Z 2000 z 4000 - E Unseeded —+— 7]
Sampled —><— Seeded —><—
0 | | | | 0 | | |
0 2000 4000 6000 8000 10000 0 5000 10000 15000 20000
Episodes Episodes

(b) Single level of MS. PAC-MAN, limited to (c) Ten levels of Ms. PAC-MAN, with Single
10,000 episodes. Level seeded policy and unseeded learning, lim-
ited to 20,000 episodes.

Fig. 4. CERRLA’s performance in the Ms. PAC-MAN environment.

5.3 Carcassonne

CARCASSONNE is a turn-based, medieval-themed board game in which players
attempt to control terrain via tokens called ‘meeples’ to score points. Each player
has two actions per turn: place a randomly drawn tile adjacent to existing tiles
such that all edges match up, then optionally place a meeple on any terrain on
the placed tile. An episode ends when all tiles have been placed, at which point
any unfinished terrain is scored.

A CARCASSONNE state is described using a combination of the 22 state pred-
icates and 10 type predicates (a full specification can be found in [25]), with the
valid actions described as one of two actions: P, = {placeTile(Player,Tile,
Location, Orientation), place M eeple(Player, Tile, Terrain)}.

In a CARCASSONNE game against a static Al using a min-max strategy for
making decisions (the default Al for JCloisterZone®), CERRLA achieves an aver-
age score of 63 per game. In comparison, the min-max AT scores 92 and a related
Monte-Carlo Tree Search approach achieves approximately 85 [26]. CARCAS-
SONNE’s complex dynamics prove to be challenging for CERRLA, but it is able to
learn an ‘easy opponent’ strategy. Figure ba shows a policy produced by CER-
RLA. The policy places tiles in close groups or near cloisters, or anywhere by
default. Meeples are typically placed on high worth (>3) terrain, or any open
terrain if CERRLA has >4 meeples left.

3 http://jcloisterzone.com/en/

http://jcloisterzone.com/en/

A Direct Policy-Search Algorithm for Relational Reinforcement Learning 91

currentPlayer(X), controls(X, ?), validLoc(Y, Z, W), numSurround-
ingTiles(Z, 4.5 < V < 8.0) — placeTile(X, ¥, Z, W) Carcassonne, CERRLA vs. Static Al

currentPlayer(X), meepleLoc(Y, Z), worth(Z, 3.0 < V < 6.0), 70
not(nextTo(?, ?, Z)) — placeMeeple(X, Y, Z)

currentPlayer(X), controls(X, ?), meepleLoc(Y, Z), worth(Z, 3.0 < 60
V <6.0) — placeMeeple(X, Y, Z)
currentPlayer(X), meeplesLeft(X, 4.0 < U < 7.0), meepleLoc(Y, Z), 2 50
worth(Z, 1.5 <V < 4.5), not(completed(Z)) — placeMeeple(X, ‘;“
Y, 2) & 40
currentPlayer(X), controls(X, ?), validLoc(Y, Z, W), numSurround- o
ingTiles(Z, 3.625 <V < 5.375) — placeTile(X, Y, Z, W) 230
currentPlayer(X), meeplesLeft(X, 4.0 < U < 7.0), meepleLoc(Y, Z), &
tileEdge(Y, ?, Z), open(Z, V) — placeMeeple(X, Y, Z) 3: 20

currentPlayer(X), validLoc(Y, Z, W), numSurroundingTiles(Z, 2.75

<V <£6.25), cloisterZone(Z, ?) — placeTile(X, Y, Z, W) 10 Greedy H—+— +
currentPlayer(X), controls(X, ?), validLoc(Y, Z, W), numSurround- Sampled F—>X—
ingTiles(Z, 2.75 < V < 6.25) — placeTile(X, Y, Z, W) 0 L L L L
currentPlayer(X), validLoc(Y, Z, W) — placeTile(X, Y, Z, W) 0 1000020000 300004000050000
Episodes

(a) Example CARCASSONNE policy generated by (b) CERRLA vs. Min-max Al in CARCAS-
CERRLA. Achieves an average reward of 65. SONNE, limited to 50,000 episodes.

Fig.5. CERRLA’s performance in the CARCASSONNE environment.

6 Conclusions

The application of the CEM to RRL — CERRLA — has been shown to be capable
of creating and combining sets of relational condition-action rules into effective
policies in a range of different environments. Although the number of training
episodes exceed value-based methods, the learning rate remains constant with
increased scale of the problem and the simplified rules minimise rule evaluation
time. It should be noted that the representation of Ms. PAC-MAN and CAR-
CASSONNE may not be ideal, and may even limit CERRLA’s behaviour, but it is
clear that CERRLA can create effective behaviour with it. In general, CERRLA
exhibits good scalability and, given only a problem’s high-level specification and
state observations, produces human-readable policies that are competitive with
more specialised single-domain approaches.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (Adaptive
Computation and Machine Learning). The MIT Press, Cambridge (1998)

2. Dzeroski, S., De Raedt, L., Driessens, K.: Relational reinforcement learning. Mach.
Learn. 43, 7-52 (2001)

3. van Otterlo, M.: The Logic of Adaptive Behaviour: Knowledge Representation and
Algorithms for the Markov Decision Process Framework in First-Order Domains.
I0S Press, Amsterdam (2009)

4. Wiering, M., van Otterlo, M. (eds.): Reinforcement Learning: State-Of-The-Art,
vol. 12. Springer-Verlag New York Incorporated, New York (2012)

5. Driessens, K.: Relational reinforcement learning. Ph.D. thesis, Department of Com-
puter Science, Katholieke Universiteit Leuven, Belgium (2004)

92

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

S. Sarjant et al.

Driessens, K., Dzeroski, S.: Combining model-based and instance-based learning
for first order regression. In: Proceedings of the 22nd International Conference on
Machine Learning, pp. 193-200. ACM (2005)

Croonenborghs, T., Ramon, J., Blockeel, H., Bruynooghe, M.: Online learning
and exploiting relational models in reinforcement learning. In: Proceeding of the
International Conference on Artificial Intelligence (IJCAI), pp. 726-731 (2007)
Driessens, K., Dzeroski, S.: Integrating guidance into relational reinforcement
learning. Mach. Learn. 57(3), 271-304 (2004)

Muller, T., van Otterlo, M.: Evolutionary reinforcement learning in relational
domains. In: Proceedings of the 7th European Workshop on Reinforcement Learn-
ing, Citeseer (2005)

van Otterlo, M., De Vuyst, T.: Evolving and transferring probabilistic policies for
relational reinforcement learning. In: BNAIC 2009: Benelux Conference on Artifi-
cial Intelligence, October 2009

Rubinstein, R.Y.: Optimization of computer simulation models with rare events.
Eur. J. Oper. Res. 99(1), 89-112 (1997)

Szita, I., Lorincz, A.: Learning to play using low-complexity rule-based policies:
illustrations through Ms. Pac-Man. J. Artif. Int. Res. 30(1), 659-684 (2007)
Kistemaker, S., Oliehoek, F., Whiteso, S.: Cross-entropy method for reinforcement
learning. Bachelor thesis, University of Amsterdam, Amsterdam, The Netherlands,
June 2008

Tak, M.: The cross-entropy method applied to SameGame. Bachelor thesis, Maas-
tricht University, Maastricht, The Netherlands (2010)

De Boer, P., Kroese, D., Mannor, S., Rubinstein, R.: A tutorial on the cross-entropy
method. Ann. Oper. Res. 134(1), 19-67 (2004)

Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)
Wilson, S.W.: Classifier fitness based on accuracy. Evol. Comput. 3(2), 149-175
(1995)

Mellor, D., Mellor, D.: A learning classifier system approach to relational rein-
forcement learning. In: Takadama, K., et al. (eds.) IWLCS 2006 and IWLCS 2007.
LNCS (LNAI), vol. 4998, pp. 169-188. Springer, Heidelberg (2008)

Mellor, D.: A learning classifier system approach to relational reinforcement learn-
ing. Ph.D. thesis, School of Electrical Engineering and Computer Science, The
University of Newcastle, Australia (2008)

Fern, A., Yoon, S., Givan, R.: Approximate policy iteration with a policy language
bias: solving relational markov decision processes. J. Artif. Int. Res. 25(1), 75-118
(2006)

Kersting, K., Driessens, K.: Non-parametric policy gradients: a unified treatment
of propositional and relational domains. In: Proceedings of the 25th International
Conference on Machine Learning, ICML 08, pp. 456-463. ACM, New York (2008)
Plotkin, G.D.: A note on inductive generalization. Mach. Intell. 5, 153-163 (1970)
Szita, 1., Lorincz, A.: Online variants of the cross-entropy method. Technical report,
arXiv:0801.1988 (2008)

Aslam, J.A., Popa, R.A., Rivest, R.L.: On estimating the size and confidence of a
statistical audit. In: Proceedings of the USENIX Workshop on Accurate Electronic
Voting Technology, EVT’07, pp. 8-8. USENIX Association, Berkeley (2007)
Sarjant, S.: Policy search based relational reinforcement learning using the cross-
entropy method. Ph.D. thesis, The University of Waikato (2013)

Heyden, C.: Implementing a computer player for Carcassonne. Master’s thesis,
Maastricht University (2009)

http://arxiv.org/abs/0801.1988

	A Direct Policy-Search Algorithm for Relational Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Terminology
	3.1 Blocks World

	4 CERRLA Algorithm
	4.1 Cross-Entropy Method
	4.2 Rule Discovery
	4.3 Policy-Search Process

	5 Evaluation
	5.1 Blocks World
	5.2 Ms.Pac-Man
	5.3 Carcassonne

	6 Conclusions
	References

