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Introduction

I Relational Reinforcement Learning (RRL) is a
representational generalisation of Reinforcement Learning.

I Uses policy to select actions when provided state
observations to maximise reward.

I Value-based RRL affected by number of states and may
require predefined abstractions or expert guidance.

I Direct policy-search only needs to encode ideal action,
hypothesis-driven learning.

I We use the Cross-Entropy Method (CEM) to learn policies.
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Cross-Entropy Method

I In broad terms, the Cross-Entropy Method consists of
these phases:

I Generate samples x(1), . . . ,x(n) from a generator and
evaluate them f (x(1)), . . . , f (x(n)).

I Alter the generator such that it is more likely to produce the
highest valued samples again.

I Repeat until converged.
I No worse than random, then iterative improvement.
I Multiple generators produce combinatorial samples.
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CERRLA
I The Cross-Entropy Relational Reinforcement Learning

Agent (CERRLA) applies the CEM to RRL.
I The CEM generator consists of multiple distributions of

condition-action rules.
I A sample is a decision-list (policy) of rules.
I The generator is altered to produce the rules used in

highest valued policies more often.
I Two parts to CERRLA: Rule Discovery and Probability

Optimisation.

clear(A), clear(B), block(A)→ move(A, B)
above(X, B), clear(X), floor(Y)→ move(X, Y)
above(X, A), clear(X), floor(Y)→ move(X, Y)
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Rule Discovery

I Rules are created by first identifying pseudo-RLGG rules
for each action.

I Each rule can then produce more specialised rules by:
I Adding a single literal to the rule conditions.
I Replacing a variable with a goal variable.
I Splitting numerical ranges into smaller partitions.

I All information makes use of lossy inverse substitution.

Example

· The RLGG for the Blocks World move action is:
clear(X), clear(Y), block(X)→ move(X, Y)

· Specialisations include: highest(X), floor(Y), X/A, . . .
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Relative Least General Generalisation Rules*

For the moveTo action:
1. edible(g1), ghost(g1), distance(g1, 5), thing(g1)→

moveTo(g1, 5)

2. edible(g2), ghost(g2), distance(g2, 8), thing(g2)→
moveTo(g2, 8)

RLGG1,2 edible(X), ghost(X), distance(X, (5.0 ≤ D ≤ 8.0)),
thing(X)→ moveTo(X,D)

3. distance(d3, 14), dot(d3), thing(d3)→ moveTo(d3, 14)

RLGG1,2,3 edible(X), ghost(X),
distance(X, (5.0 ≤ D ≤ 14.0)), thing(X)→ moveTo(X,D)

* Closer to LGG, as background knowledge is explicitly known.
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Simplification Rules

I Simplification rules are also inferred from the environment.
I They are used to remove redundant conditions and identify

illegal combinations.
I Use the same RLGG process, but only using state facts.
I We can infer the set of variable form untrue conditions for a

state to use negated terms in simplification rules.

Example

· When on(X, Y) is true, above(X, Y) is true
· on(X, Y)⇒ above(X, Y)
· block(X)⇔ not(floor(X))
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Initial Rule Distributions
I Initial rule distributions consist of RLGG distributions and

all immediate specialisations.

RLGG → moveTo(X)
b

b

b

edible(X) → moveTo(X)
b

b
b ghost(X) → moveTo(X)

b
b

b

blinking(X) → moveTo(X)
b

b
b¬edible(X) → moveTo(X)

b

b

bdot(X) → moveTo(X)
b

b
b

RLGG +

RLGG +

RLGG +

RLGG +

RLGG +
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Probability Optimisation

I A policy consists of multiple rules.
I Each rule comes from a separate distribution.
I Rule usage and position are determined by CEM

controlled probabilities.
I Each policy is tested three times.

Distribution A Distribution B Distribution C
a1 : 0.6 b1 : 0.33 c1 : 0.7
a2 : 0.2 b2 : 0.33 c2 : 0.05

a3 : 0.15 b3 : 0.33 c3 : 0.05
...

...
p(DA) = 1.0 p(DB) = 0.5 p(DC) = 0.3
q(DA) = 0.0 q(DB) = 0.5 q(DC) = 0.8

Example policy
a1

b3

c1
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Updating Probabilities

I A subset of samples make up the floating elite samples.
I The observed distribution is the distribution of rules in the

elites.
I Observed rule probability equal to frequency of rules.
I Observed p(D) equal to proportion of elite policies using D.
I Observed q(D) equal to average relative position [0,1].

I Probabilities are updated in a stepwise fashion towards the
observed distribution.

pi ← α · p′i + (1− α) · pi
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Updating Probabilities, Contd.

I When a rule is sufficiently probable, it branches, seeding a
new candidate rule distribution.

I More and more specialised rules are created until further
branches are not useful.

I Stopping Condition: A seed rule cannot branch again.
I Convergence occurs when each distribution converges (no

significant updates).

A Direct Policy-Search Algorithm for Relational Reinforcement Learning Samuel Sarjant



Introduction CERRLA Evaluation Conclusion and Remarks

Summary

Initialise the distribution set D
repeat

Generate a policy π from D
Evaluate π, receiving average reward R
Update elite samples E with sample π and value R
Update D using E
Specialise rules (if D is ready)

until D has converged
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How Well Does It Work?

I Each environment provides a different style of problem to
solve.

I E.g. Competing agents, partial information, numerical
information.

I The policies produced are not necessarily optimal, but can
be competitive.

I The policies are understandable (relative to neural
networks, random forests, etc).
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Blocks World
I Blocks World is the standard testing environment for RRL.
I Simple dynamics, single reward state, fully deterministic

(usually), single action.

Algorithm Average
Reward

# of Training
Episodes (×1000)

stack onAB stack onAB
CERRLA 1.0 0.99 1.6 10.3
P-RRL 1.0 0.9 0.045 0.045
RRL-TG 0.88 0.92 0.5 12.5
RRL-TG (P learning) 1.0 0.92 30 30
RRL-RIB 0.98 0.9 0.5 2.5
RRL-KBR 1.0 0.98 0.5 2.5
TRENDI 1.0 0.99 0.5 2.5
TREENPPG — 0.99 — 2
MARLIE 1.0 0.98 2 2
FOXCS 1.0 0.98 20 50
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Blocks World
I CERRLA is scale-free.
I Can learn strategies in enormous BW states, but is also

hampered in small BW.
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Ms. Pac-Man

I Fully observable, variable reward, multiple actions, multiple
agents (ghosts).

I Achieves a similar reward to Szita and Lörincz’s CEM
algorithm.

edible(X), distance(X, Y)→ moveTo(X, Y)
powerDot(X), distance(X, Y)→ moveTo(X, Y)
thing(X), distance(X, Y), not(ghost(X)), not(ghostCentre(X))→ moveTo(X, Y)
dot(X), distance(X, (26 <= Y <= 52))→ moveFrom(X, Y)
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Mario

I Partial map observability, variable reward, many actions
(non-deterministic action resolution), multiple agents
(enemies).

I The environment proved to be challenging, but some
learning did take place.

marioPower(fire), canJumpOn(X), goomba(X), heightDiff(X, ?), width(X, ?),
distance(X, Y)→ shootFireball(X, Y, fire)

canJumpOn(X), heightDiff(X, ?), distance(X, (37.0 ≤ Y ≤ 304.0)),
not(powerup(X)), not(enemy(X))→ jumpOnto(X, Y)
. . . 4 more.
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Carcassonne

I Variable reward, competing agent(s), many state
predicates available.

I CERRLA learns effective behaviour in all different
experiment settings.

currentPlayer(X), controls(X, ?), validLoc(Y, Z, W), numSurroundingTiles(Z,
(4.5 ≤ D0 ≤ 8.0))→ placeTile(X, Y, Z, W)

currentPlayer(X), meepleLoc(Y, Z), worth(Z, (3.0 ≤ D0 ≤ 6.0)), not(nextTo(?,
?, Z))→ placeMeeple(X, Y, Z)
. . . 7 more.
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In Conclusion

I When applied to all four environments, CERRLA learns fast,
effective, and comprehensible behaviour.

I No human guidance was given. Only the state
observations and the predicate definitions were used.

I In the standard Blocks World, it performs near-optimally,
and was shown that the number of states does not affect
convergence.

I A specialised approach may achieve better performance,
but often requires specialised techniques.

I Whereas CERRLA can be applied in any relational
environment and learn good behaviour.
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